
DEVELOPMENT
GUIDE 20

22

Written by Benjamin Williams
June 2022

MEMPHIS SOLUTIONS

 System information

 Considerations for games development

 Required game functionalities

 Key mappings

 Research Arcade: Unity SDK

 Troubleshooting

1.

2.

3.

4.

5.

6.

Table of Contents

MEMPHIS SOLUTIONS

System
Information

Software

A joypad -> keyboard mapper which a) translates joypad inputs
into keystrokes and b) assigns virtual indices to the two joypads to
avoid troubles with USB enumeration.*
Google Chrome, executed in kiosk, fullscreen and incognito mode.
This is what the games/arcade software runs inside.
A daemon which boots the above software when needed.

There are three pieces of software running on the arcade machines
at any given time:

All games which are hosted on the machines are built with HTML5 &
WebGL, meaning you will need to target this platform when
developing your game. Luckily, the majority of existing game engines
feature some type of build process to WebGL. With that being said, it
may be worth testing on your machine to ensure that no
functionality has been dropped through the WebGL build. As an
example, you may encounter some issues with shaders during
compilation, especially if you’re using features which GLSL ES does
not support.

* More information on keyboard mappings/inputs can be found later in this document.

Hardware

The machines inside the arcade cabinet are of a
fairly low hardware spec. It is worth taking this into
account when developing your game, as
performance may be an issue if your game is
intensive. As a result, we suggest to test your game
on a slower, older computer to ensure that it runs
smoothly.

Another thing to consider is the resolution of the
monitors inside the arcade cabinets. The cabinets
feature a 1920x1080 resolution, and all games will be
played in fullscreen mode within the browser. If your
game is developed without this in mind, some visual
artefacts may be encountered -- such as
misalignment of UI elements.

Platform limitations

As the arcade software is primarily web-based, you
can’t do a few things. One of these is the majority of
system-level calls, such as the ability to create,
modify or delete files. Instead, you will have to either
use web-based database approaches (such as local
storage, or services such as Firebase) or make use of
functions dedicated to building for web, within your
engine. For a more comprehensive list, it is probably
worth looking up the design considerations for web
within the documentation of your engine. This will
probably highlight some approaches to circumvent
these problems.

Requirements for developers

The ability to exit out of the game, at any point, if the exit button is pressed.The
game will exit to the main menu screen if no key presses are detected after 30
seconds. More info on how to detect if the exit button is pressed is discussed
later.
Using exit(), Application.Quit() or other native exit functions will not work in web
builds. Instead your game should access a URL in the browser to exit the game.
This is possible in most game engines (for example, in Unity, you could use
Application.OpenURL(url)).
A reasonable description of how the game is played. A main menu prior to the
main game, which should feature at least a Start and Exit button.
All menus/selectable elements must be selectable via key presses, as the mouse
is not present in the current arcade set up.
The keyboard mapper works by detecting joypad inputs, and calling native
keyboard events. Please ensure that you do not use joypad inputs in your game,
as this will trigger two events (one for joypad inputs, one for keys). Please just
use keyboard events.

You are required to implement the following features into your game before it can
be successfully deployed to the arcade machines:

MEMPHIS SOLUTIONS

Required
Functionality

Physical button layout

Below is an image showing the physical button layout for the arcade cabinets. It is
worth noting that this layout is identical regardless of which machine is targeted.
For virtual keyboard mappings, please see the next page, in which they are listed in
full.

Keyboard
mappings

Virtual key mappings

The virtual keyboard mappings are shown below for
both players. These maps show how physical button
presses are translated to virtual key presses. For
example, if you need to tell if the player has pressed
the Exit button, you would check if the Q key is
pressed.

Exit
Start
A
B
C
D
E
F
Up
Down
Left
Right

Button

Q
Return
Z
X
C
V
B
N
Up arrow
Down arrow
Left arrow
Right arrow

P1 Key Press

Q
Backspace
F
G
H
J
K
L
W
S
A
D

P2 Key Press

About the SDK

The Unity SDK for the Research Arcade platform is a small package you can import
directly into your Unity project to migrate to the Research Arcade platform. The
SDK mainly provides syntactic sugar for detecting inputs, and methods for
navigation. Further details are provided in the repository itself, which can be found
below.

https://github.com/uol-arcade/research-arcade-unity-sdk

Research Arcade:
Unity SDK

https://github.com/uol-arcade/research-arcade-unity-sdk

Get in touch

Are you having problems/issues developing your game for the arcade machines?
Do you have any questions relating to this document? If you need help, the best
idea is to get in touch with us. Contact details can be found below.

Troubleshooting

Email
help@socstech.support

Office
INB1201

